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Abstract

Strain softening is associated with the evolution of localization. With the use of the similarity method, a closed-form
solution for wave propagation in a strain softening bar is derived in the paper through a partitioned-modeling

procedure with local elastoplastic constitutive models. The initial point of the localization is taken as the point at
which the type of governing di�erential equation transforms from a hyperbolic one to an elliptic one due to material
softening. The evolution of localization is then represented by a moving material surface between the softening domain

and non-softening domain. The motion of the material surface is of di�usion type, representing macroscopically the
progressive percolation of heterogeneous ¯ow or microdamage. The evolution of relevant ®eld variables along the bar
is shown, and the e�ects of the model parameters on the solution are discussed to demonstrate the proposed

procedure. The analytical solution is unique and stable for the given set of boundary and initial data, and material
properties, based on the theory of di�erential equations. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Localization is manifested by softening of material properties that is accompanied by large
deformations localized in a ®nite zone. The gradual decline of stress with increasing strain inside the
localization zone represents the process of progressive failure or damage, which might result in
formation and propagation of macro-cracking through solids.
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In the last two decades, considerable e�orts have been made to ®nd a suitable approach to model the
evolution of inhomogeneous interactions among material particles within the localization zone. Among
the continuum approaches proposed are nonlocal models, rate-dependent models and Cosserat
continuum models. The nonlocal features have appeared in several forms, which include the strain
gradient, imbricated continua, prescribed zones of localization and weighted integral averages of
damage. In the nineties, much research on localization has been focused on resolving more e�ciently
di�erent orientations and patterns of localization zones so that routine applications of localization
analyses might be feasible (de Borst et al., 1993; Chen and Schreyer, 1994; Neilsen and Schreyer, 1993;
Pietruszczak and Niu, 1993; Pijaudier-Cabot and Benallal, 1993; Vardoulakis et al., 1992; Zbib and
Jubran, 1992; among others). As can be seen from the literature review, these models include higher
order terms in space and/or time or a localization limiter to predict the evolution of localization.
Mathematically speaking, the use of higher order terms makes the governing equations well-posed in a
high order sense for localization problems, for which local constitutive models yield ill-posed governing
equations. Although many promising results have been obtained by these proposed approaches, there
are still some limitations that prohibit the prediction of localization phenomena in a general case. In
particular, it is not feasible to perform large-scale computer simulation of structural failure with using
higher order models via current computational facilities. Hence, an analytical e�ort is made in this
paper to explore whether the evolution of dynamic softening can be predicted via local constitutive
models.

The closed-form solutions for wave propagation in a one-dimensional bar which undergoes strain
softening have been discussed by Bazant and Belytschko (1985), Chen and Sulsky (1995) and Armero
(1997). The analysis by Bazant and Belytschko (1985) for a classical (local) continuum shows that the
length of the strain-softening region tends to localize into a single cross-sectional plane of the bar, at
which the strains becomes in®nite within an instant. In result, the strain-softening process dissipates no
energy in a ®nite duration if a local model is used, which is not representative of the experimentally
observed behavior. By including a localized dissipative mechanism in a local continuum through the
strong discontinuities in the displacement ®eld, Armero (1997) obtained an exact closed-form solution
with a general localized softening law. However, the in¯uence of softening response on the elastic wave
domain is not considered. Chen and Sulsky (1995) suggested that a partitioned-modeling method
together with a set of moving jump conditions be applied to the analysis of localization problems
without invoking higher order models, based on the previous research (Chen, 1993).

The basic idea of the partitioned-modeling approach is to apply di�erent local constitutive models
inside and outside the localization zone, with a moving material surface of discontinuity, which is
associated with the local changes of material properties, being de®ned between di�erent material
domains. Consequently, simpli®ed governing di�erential equations might be formulated for the large-
scale computer simulation of structural failure. The partitioned-modeling approach has been used in
several cases to obtain approximate solutions for rate-independent elastoplasticity, creep and failure
wave problems (Chen, 1993; Chen et al., 1997; Chen and Xin, 1999). An analytical approach, that is
di�erent from the previous work via the jump conditions (Chen and Sulsky, 1995), is proposed in this
paper to simulate the progressive percolation of heterogeneous ¯ow or microdamage in dynamic failure
response. A similarity method is used here to solve the localization problem that involves two moving
boundaries within a single domain, without invoking any jump or discontinuity conditions in advance.
The major assumptions that the parallelogram rule could be applied to those points on the boundary
between hyperbolic and elliptic (softening) domains, and that higher order terms could be omitted to
reach a closed-form solutions, which were made in the previous work to accommodate the jump
conditions (Chen and Sulsky, 1995), are not required for the exact solutions in this paper. Hence, the
proposed analytical approach is rigorous in the mathematical sense. Since the initial point of
localization is taken as the point at which the type of governing di�erential equation transforms from a
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hyperbolic (elastic) to an elliptic (softening) one, an e�ort has been made to clarify the de®nition of

boundary and initial conditions associated with di�erent governing equations, and the experimental

means to determine model parameters associated with the evolution of localization. The analytical

approach proposed here considers not only the response of localized softening zone itself, but also the

in¯uence of the softening evolution on the adjacent zone of elastic wave propagation. The key

assumption made in this paper is that the motion of the material boundary between hyperbolic and

elliptic domains is di�usive. To obtain a closed-form solution, the di�usion speed is assumed to be

constant.

The recent results about the delayed failure wave in the glass specimens, that are shocked to near but

below the Hugoniot elastic limit (HEL), suggest that the HEL may not be an elastic limit, but rather,

may be a transition in failure mechanisms. A possible transition is the one from a delayed kinetic-

controlled failure process below the HEL to a prompt stress-controlled failure process above the HEL

(Grady, 1995a, 1995b). Based on a careful study on the failure wave phenomenon observed in shocked

glasses, it appears that, in the dynamic failure process, micro®ssuring at one location induces local

deformation heterogeneities that in turn initiate micro®ssuring in the adjacent material and so on, after

a critical state is reached (Feng and Chen, 1999). Hence, a di�usion equation governing the progressive

percolation of heterogeneous microdamage appears to capture the essence of the dynamic failure

evolution in shocked glasses, as veri®ed with the experimental data available. The use of jump

conditions could also result in a di�usion equation governing the failure wave speed, through a

mathematical argument based on the transition of di�erential equations (Chen and Xin, 1999).

However, a closed-form solution can not be obtained for the nonlinear di�usion equation governing the

evolution of microdamage, that depends on the stress state and internal state variables. In order to

obtain a closed-form solution in this paper, we assume that the speed of the moving material boundary

is constant. This can be thought as a special case of di�usion, i.e., the time average of a real di�usion

process. As a result, the model parameters can be explored qualitatively in a closed-form analytical

framework. The closed-form solutions obtained by Armero (1997) with the use of a strong discontinuity,

also shows that the softening pro®le propagates at a constant speed along the bar. Due to the limitation

of current experimental facilities, it is still a challenging task to quantitatively determine how the

internal energy di�uses in real-time associated with the evolution of material failure. However, what is

proposed in this paper is not only a possible mathematical approach for modeling material failure with

the use of local constitutive models, but also provide a qualitative means to explore the energy

dissipation and di�usion with the evolution of material failure from a macroscopic viewpoint, and a

useful tool to verify the numerical solutions for nonlinear governing equations.

Based on the theory of di�erential equations, the analytical solution proposed is unique and stable for

given set of boundary and initial data, and material properties. What we want to emphasize here is that

a unique and stable solution could be obtained for a given set of data in a controlled manner, just as

certain constraint conditions must be imposed on the post-peak solution path to obtain a numerical

solution of structural softening responses with other models. In fact, the randomness of the boundary

and initial data, and the material properties and defects at di�erent scales play a very important role,

and its e�ects on the softening response should be fully understood before a general approach could be

developed without any arti®cial assumptions. Because of the di�culty involved, we are trying to solve

only one problem at a time.

To demonstrate the features of the analytical solution, the evolution of the important ®eld variables

along the bar are given together with the e�ects of the model parameters on the solution. The length of

the elastic domain, which is under the in¯uence of the strain-softening response, is found to be a�ected

by the speed of the moving material surface. However, the strain in this elastic domain is characterized

by the limit strain eL:
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2. Analytical solutions

2.1. Approach

The proposed analytical approach is presented ®rst to solve a one-dimensional dynamic softening
problem with the use of local elastoplastic constitutive models. In this problem, a tensile bar of length L
with mass density r is ®xed at the left end x � 0, as depicted in Fig. 1(a). It is assumed that the material
behavior under dynamic loading can be described through a rate-independent linear elastoplastic
softening model, in which E denotes Young's modulus, sL limit stress with eL � sL=E, and b softening
parameter as shown in Fig. 1(b). If sa, constant stress, applied at the right end x � L, an elastic stress
wave will propagate along the bar from x � L to x � 0: In order to initiate softening at the ®xed end
when the stress is doubled, the value of applied stress sa is chosen within the range �12sL, sL�: Generally,
the equation of motion for one-dimensional wave propagation can be written as

@ 2u

@t 2
ÿ 1

r
ds
de
@ 2u

@x 2
� 0 �1�

where e is normal strain, s normal stress, t time, and u displacement.
The tangent modulus ds=de of the stress±strain relation is not constant in general. Before the wave

front reaches the rigid boundary at x � 0, the stress is below the limit stress, so the material behavior is
elastic, with the tangent modulus ds=de � E: Therefore, the di�erential equation governing the elastic
wave domain is hyperbolic: utt ÿ v2e uxx � 0, with ve �

���������
E=r
p

being the uniaxial elastic wave speed. When
the wave front reaches the rigid boundary at t � tL � L=ve, stress will be doubled and exceed the limit
stress. As a result, the material will undergo strain softening, with a negative tangent modulus ds=de �
ÿbE: Thus, a new domain, i.e., a dynamic strain-softening domain, is produced, in which the type of
governing di�erential equation transforms from a hyperbolic one to an elliptic one: utt � bv2e uxx � 0: If
nothing is added to regularize the solution, a zero measure of the elliptic domain would occur for the
local model (Bazant and Belytschko, 1985). However, the boundary between the elliptic and hyperbolic
domain is assumed here to be governed by a di�usion equation which is the transition type between a
hyperbolic one and an elliptic one of PDE (John, 1982). As can be seen, the initiation of localization is
accompanied by the initiation of a material boundary across which the type of governing di�erential
equation changes due to the material softening. This material boundary will move along the bar during
the evolution process of localization. The evolution of an elliptic (softening) domain from a critical
point is similar to the evolution of a turbulence (elliptic) domain from a perturbation (Chen and Clark,
1995). The physics behind the evolution of a softening domain is related here to the progressive
percolation of heterogeneous ¯ow or microdamage, starting from a critical state.

Fig. 1. (a) The con®guration of a strain-softening bar under dynamic loading. (b) Local constitutive model: b softening parameter,

sL limit stress. PQ: unloading path of a material point.
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Two facts based on experimental observations should be elucidated here. First, the size of the
localization zone is ®nite. Second, this ®nite localization zone is not formed within an instant, and
instead, it is formed during a ®nite time span. In other words, the evolution of the localization zone,
which is represented by a moving material boundary between softening and non-softening domain, has a
®nite speed. In reality, the motion of the material boundary depends on the stress state and internal
state variables. To obtain a closed-form solution, however, this speed is assumed here to be a constant
vb, which can be thought as a special case of di�usion: the time average of a real di�usion process.

In summary, the whole solution domain is partitioned by a moving boundary @O1: xb�t� � vb�tÿ tL�
after the limit state is reached. At any given time t > tL, the whole domain consists of two sub-domains:
an elliptic domain OI and a hyperbolic domain �OII � OIII), as shown in Fig. 2. Therefore, we can apply
di�erent local constitutive models to elliptic and hyperbolic domains, respectively, and obtain an
analytical solution for the whole domain. For convenience, the governing di�erential equations are
expressed in a strain-based form in the following derivations.

2.2. Solution in the elliptic domain �OI)

Due to the sign change in the tangent modulus, the di�erential equation governing the localization
zone is elliptic:

@ 2eÿ

@ t2
� bE

r
@ 2eÿ

@x 2
� 0 x 2 �0, xb�t�

�
and t 2 �tL, tF � �2�

where the superscript ÿ denotes the ®eld variables to the left of the moving material boundary, and the
location of moving material boundary xb�t� is de®ned as

xb�t� � vb�tÿ tL � �3�
From a mathematical viewpoint, Eq. (2) can be further thought as a Laplace equation, because the

Fig. 2. Solution domain partitioned by a moving boundary dO1: x b � nb�tÿ tL�: At any time t > tL, the whole domain is parti-

tioned into two domains: an elliptic domain OI and a hyperbolic domain �OII � OIII�:
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constant coe�cient bE=r can be scaled into the x-dimension. It is known that a Laplace equation
signi®es a potential distribution ®eld. From a physical viewpoint, the evolution of localization is
considered here to be a di�usion process, in which the energy carried by the elastic stress wave is
dissipated in the localization zone that results in the progressive percolation of heterogeneous ¯ow or
microdamage.

The following set of data is prescribed for Eq. (2). First, the strain at the rigid boundary attains the
limit strain eL at the moment when the elastic wave front arrives at the ®xed end:

eÿ�x � 0, t � tL � � eL �4a�
Second, the strain just across the moving boundary x � xb�t� is kept as a constant eL at any time, which
represents the initiation of softening at that material surface:

eÿ�x � xb�t�, t� � eL t 2 �tL, tF � �4b�
At the ®nal stage when t � tF, the strain at the ®xed end attains eF at which the bar will lose its load-
carrying capacity so that the continuum theory does not hold any more.

eÿ�x � 0, t � tF � � eF �4c�
where eF is de®ned as follows according to the linear softening law:

eF �
�
1� 1

b

�
eL �5�

The problem consisting of Eq. (2), boundary and initial condition (4) and given material properties is a
Dirichlet problem for the Laplace equation. A solution for Eq. (2) may be expressed as follows:

eÿ � A� B�tÿ tL � � Cx�Darctan
� x���

b
p

ve�tÿ tL �
�

�6�

with A, B, C and D being the constants to be determined from the boundary and initial data.
By the initial condition (4a), we have A � eL: Substituting this result and Eq. (6) into the moving

boundary condition (4b) and rearranging the terms, we obtain the following relation:

�B� Cvb�t�Darctan
� vb���

b
p

ve

�
ÿ �B� Cvb�tL � 0 �7a�

Since t is arbitrary, we must have

B� Cvb � 0 and D � 0: �7b�
Substituting Eq. (7b) into Eq. (6), we have

eÿ � eL � B�tÿ tL � ÿ B

vb

x �7c�

By the condition (4c) when failure occurs, we can obtain

B � eF ÿ eL

tF ÿ tL
�7d�

Therefore, the solution for this problem is given by
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eÿ�x, t� � eL � eF ÿ eL

tF ÿ tL

�
tÿ tL ÿ x

vb

�
t 2 �tL, tF � and x 2 �0, vb�tÿ tL �

� �8a�

This solution has following properties:

1. When t � tL, localization initiates at the point x � 0 with e � eL:
2. At any position x, strain is increasing with time t.
3. At any time t, the strain is decreasing with x.
4. When t � tF, strain at the ®xed boundary x � 0 attains eF:

The corresponding stress ®eld is calculated through the linear softening law as follows:

sÿ�x, t� � sL ÿ bE
�
eÿ�x, t� ÿ eL

� �8b�

From the theory of partial di�erential equations, two remarks should be made here:

1. This solution is unique for the given Dirichlet problem.
2. As expected by the maximum principle, the maximum and minimum values attain at the boundary

(McOwen, 1996).

The corresponding displacement and velocity ®elds then take the forms of

u�x, t� �
�xRx b�t�

0

e�x, t� dx � eLx� eF ÿ eL

tF ÿ tL

�
�tÿ tL �xÿ x 2

2vb

�
�8c�

v�x, t� � eF ÿ eL

tF ÿ tL
x x 2 �0, vb�tÿ tL �

� �8d�

2.3. Solution in the hyperbolic domain �OII � OIII)

The governing di�erential equation for the hyperbolic domains is given by

@ 2e�

@t2
ÿ E

r
@ 2e�

@x 2
� 0 x 2 �xb�t�, L

�
and t 2 �tL, tF � �9�

As can be seen from Fig. 2, through the moving material boundary @O1 the softening response only
a�ects the solution at the points between the moving boundary @O1 � xb�t� and moving boundary
@O2 � x e�t� that are originated at the point (0, tL), recalling the concepts of domain of dependence and
domain of in¯uence (John, 1982; McOwen, 1996). Therefore, the hyperbolic domain can be further
divided into two sub-domains: OII � f�x; t�:x 2 �xb�t�, x e�t��, t 2 �tL, tF�g and OIII � f�x; t�:x 2 �x e�t�, L�,
t 2 �tL, tF�g, where the sub-domain OII is under the in¯uence of softening response but the sub-domain
OIII is not.

Because of the evolution of localization zone and the propagation of re¯ected wave, the boundaries
both at the left and right side of the sub-domain OII is moving with time. The left boundary @O1

between softening domain OI and non-softening domain OII, is assumed to be moving at a constant
speed vb and characterized by the limit strain eL: The right boundary @O2 between sub-domain OII and
OIII is moving with speed ve and characterized by a bounded strain eu which must be less than eL: Thus,
for the sub-domain OII, we have the following set of prescribed conditions:

e��x � xb�t�, t� � eL t 2 �tL, tF � �10a�
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e��x � x e�t�, t� � eu t 2 �tL, tF � �10b�
Since the given data on the moving material boundary @O1 are the time-dependent solutions of an
elliptic equation, the parallelogram rule can not be applied here to solve the given wave equation in sub-
domain OII: To deal with the speci®c problem of wave propagation in which two moving boundaries
exist within a single domain, a similarity method (Bluman and Kumei, 1989; Olver, 1993) is used. We
de®ne a similarity variable as follows:

Z � xÿ xb�t�
x e�t� ÿ xb�t� x 2 �xb�t�, x e�t�

� �11�

where xÿ xb�t� is the distance from the concerned point x to the moving material boundary @O1, and
x e�t� ÿ xb�t� is the current total length of the domain OII:

The positions of the left and right boundaries at any time t > tL are determined by Eq. (3) and the
following equation, respectively

x e�t� � ve�tÿ tL � �12�
Thus, the similarity variable can be explicitly expressed as

Z � xÿ vb�tÿ tL �
�ve ÿ vb��tÿ tL � �13�

We also introduce a dimensionless strain ratio y as below:

y � e
eL

�14�

The governing equation for y is identical with that for e:

@ 2y
@t 2
ÿ E

r
@ 2y
@x 2
� 0 �15�

but the conditions on y are simpler and given by

y�x � xb�t�, t� � 1 t 2 �tL, tF � �16a�

y�x � x e�t�, t� � eu

eL

R1 t 2 �tL, tF � �16b�

It is reasonable to suppose that y is not a function of t and x separately, but rather it is a function of
the dimensionless ratio Z, based on the theorem in dimensional analysis.

The Eq. (15) and condition (16) can then be rewritten in terms of Z: This requires that we represent
the partial derivatives of y with respect to t and x in terms of the derivatives with respect to Z, which
can be found, using chain rule, to be

@ 2y
@x 2
� 1

�ve ÿ vb� 2�tÿ tL �2
d2y
dZ2

�17a�

@ 2y
@t 2
� 1

�ve ÿ vb �2�tÿ tL �2
"

x 2

�tÿ tL �2
d2y
dZ2
� 2x�ve ÿ vb �
�tÿ tL �

dy
dZ

#
�17b�
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From Eq. (13), we also know that

x

�tÿ tL � � �ve ÿ vb�Z� vb �18�

Hence, the second order partial di�erential equation (15) can be reduced to a second order ordinary
di�erential equationh

�ve � vb � ÿ 2vbZÿ �ve ÿ vb�Z2
id2y

dZ2
ÿ 2

�
vb � �ve ÿ vb �Z�dy

dZ
� 0 �19�

by substituting Eqs. (17) and (18) in Eq. (15).
The corresponding boundary locations are simpli®ed as follows: x � xb�t� maps into Z � 0 and x �

x e�t� maps into Z � 1: Thus, the condition (16) becomes

y�Z � 0� � 1 �20a�

y�Z � 1� � eu

eL

R1 �20b�

As a result, the original problem is changed from a moving boundary problem to a ®xed boundary
problem. The fact that the introduction of the similarity variable reduces the partial di�erential equation
(15) to an ordinary di�erential equation (19) with respect to Z and reduces the separate conditions in t
and x to consistent conditions involving Z alone, is a posterior proof of the validity of the approach.

Let F � dy
dZ , then

d 2y
dZ 2 � dF

dZ : Eq. (19) can therefore be rewritten ash
�ve � vb � ÿ 2vbZÿ �ve ÿ vb�Z2

idF
dZ
ÿ 2

�
vb � �ve ÿ vb�Z�F � 0 �21�

That is,

dF
F
� 2vb � 2�ve ÿ vb�Z
�ve � vb � ÿ 2vbZÿ �ve ÿ vb�Z2

dZ �22�

Integration of Eq. (22) results in

lnF � ÿln
h
�ve � vb � ÿ 2vbZÿ �ve ÿ vb�Z2

i
� ln C1 �23�

where ln C1 is a constant of integration. It follows from Eq. (23) that

F � C1

�ve � vb� ÿ 2vbZÿ �ve ÿ vb�Z2
� dy

dZ
�24�

Upon integrating Eq. (24), we can obtain

y�Z� � C1

2ve

ln

�
ve � vb � �ve ÿ vb�Z
ve ÿ vb ÿ �ve ÿ vb�Z

�
� C2 �25�

where C2 is another constant of integration. According to condition (20), we have
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y�Z � 0� � C1

2ve

ln

�
ve � vb

ve ÿ vb

�
� C2 � 1 �26a�

and

y�Z � 1� � C1

2ve

ln�1� � C2 � eu

eL

R1 �26b�

Since (26b) is bounded, it follows that C1 � 0 and C2 � 1: Then, with the use of Eq. (14), the solution
of the original problem takes the form of

e��x, t� � eL t 2 �tL, tF � and x 2 �vb�tÿ tL �, ve�tÿ tL �
� �27a�

The above solution for sub-domain OII has the following properties:

1. When t � tL, localization initiates at the point x � 0 with e � eL, and sub-domain OII starts
expanding.

2. The strain is constant inside the domain OII:

The corresponding stress, displacement and velocity ®elds can be found to be

s��x, t� � Ee��x, t� � sL �27b�

u�x, t� � u�xb�t�, t� �
�xRx e�t�

x b�t�
e�x, t� dx � eLx� vb

2

eF ÿ eL

tF ÿ tL
�tÿ tL � 2 �27c�

v�x, t� � eF ÿ eL

tF ÿ tL
vb�tÿ tL � �27d�

The solution of the sub-domain OIII can be obtained by a similar procedure, with the given boundary
conditions

e�x � x e�t�, t� � eu t 2 �tL, tF � �28a�

e�x � L, t� � ea � sa

E
t 2 �tL, tF � �28b�

A simple similarity variable Z� and the dimensionless ratio y� can be de®ned, respectively, as follows:

Z� � xÿ ve�tÿ tL �
Lÿ ve�tÿ tL � �29�

with Lÿ x e�t� being the current total length of the domain OIII, and

y� � e
ea

�30�

with ea being the strain corresponding to the incident elastic stress wave.
The solution can be found to be

e��x, t� � sa

E
t 2 �tL, tF � and x 2 �ve�tÿ tL �, L

� �31a�
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Fig. 4. The decrease of stress corresponding to Fig. 3

Fig. 5. The changes of displacement corresponding to Fig. 3.

Fig. 3. The evolution of localization after the limit state is reached.
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Fig. 6. The changes of velocity corresponding to Fig. 3.

Fig. 7. The strain history at x=0.05 and 0.1m after the localization occurs.

Fig. 8. The velocity history at x = 0.05 and 0.1 m corresponding to Fig. 7.
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The corresponding stress, displacement and velocity ®elds take the forms of

s��x, t� � Ee��x, t� � sa �31b�

u�x, t� � u�x e�t�, t� �
�xRL

x e�t�
e�x, t� dx � eex� ve�eL ÿ ee ��tÿ tL � � vb

2

eF ÿ eL

tF ÿ tL
�tÿ tL �2 �31c�

v�x, t� � ve�eL ÿ ee� � eF ÿ eL

tF ÿ tL
vb�tÿ tL � �31d�

Obviously, there is a jump in strain across the moving boundary @O2 between OII and OIII: This strain
jump has a magnitude of �eL ÿ ea). Correspondingly, there is also a velocity discontinuity with a
magnitude of ve �eL ÿ ea� across the moving boundary @O2:

2.4. Remarks on the solutions

By Eq. (8a), the strain rate in the localization zone is constant and given by

Fig. 9. (a) The evolution of localization after the limit state is reached for a larger eF: (b) The evolution of localization after the

limit state is reached for a smaller eF:
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_eÿ�x, t� � eF ÿ eL

tF ÿ tL
t 2 �tL, tF � and x 2 �0, xb�t�

� �32�

In the elastic domain, the strain rate is zero,

_e��x, t� � 0 t 2 �tL, tF � and x 2 �xb�t�, L
� �33�

Thus, there is a jump in strain rate across the moving material boundary @O1 � xb�t�, as expected in the
conventional de®nition of a localized failure mode (Chen, 1996).

_eÿ�x � xb�t�, t�6�_e��x � xb�t�, t� t 2 �tL, tF � �34�
However, the strain is continuous across this boundary:

eÿ�x � xb�t�, t� � e��x � xb�t�, t� � eL t 2 �tL, tF � �35�
Consequently, displacement u must also be continuous across this boundary.

Based on the local constitutive model (8b), the permanent strain can be calculated as follows

eP�x� � eÿ De � �1� b��eÿ eL � �36�

Fig. 10. (a) The displacement distribution corresponding to Fig. 9(a). (b) The displacement distribution corresponding to Fig. 9(b).
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Substituting Eq. (8a) in Eq. (36), the permanent strain in the localization zone, after the load-carrying-
capacity of the bar is lost at which e�x � 0, t � tF��eF as shown in Fig. 1(b), can be expressed as

eP�x� �
�
1ÿ x

vb�tF ÿ tL �
�
eF �37�

with eF being de®ned in Eq. (5).
The permanent elongation can then be obtained by the integration of Eq. (37):

DL �
�vb�tFÿtL �

0

eP�x� dx � 1

2
eFvb�tF ÿ tL � �38�

Hence, the speed of moving boundary vb (an average value during the time span t 2 �tL, tF�� can be
estimated as follows, if eF, tF and the permanent elongation DL can be measured through experiments,

vb � 2DL
eF�tF ÿ tL � �39�

Fig. 11. (a) The velocity distribution corresponding to Fig. 9(a). (b) The velocity distribution corresponding to Fig. 9(b).
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2.5. Demonstration

To demonstrate the features of the proposed analytical solution, the material parameters are assigned
as follows which are representative of concrete: E = 50 GPa, r � 2000 kg/cm3, sL � 50 MPa. The other
parameters have the value of L = 1 m, sa � 30 Pa, tF � 250 ms.

For comparison purpose, the softening parameter b � 0:125, 0.2, 0.5 are used, correspondingly,
eF � 9eL, 6eL, 3eL based on Eq. (5). The speed of moving material surface vb � ave, with a � 0:5, 0.7, 0.9
being used for three di�erent cases.

Since the incident stress wave has a level of sa � 30 MPa, the doubled stress at the ®xed end will
exceed the limit stress sL � 50 MPa. Hence, the localization will occur at t � tL: As shown in Fig. 3 and
Fig. 7 for the case of b � 0:2, there is a jump in the strain rate across the moving material boundary
@O1 during the evolution of localization. The corresponding decrease of stress behind the moving
material boundary is shown in Fig. 4. The changes in strain distribution are also re¯ected through the
changes in displacement and velocity in Figs. 5 and 6. The velocity jump across the moving boundary
@O2 is shown in Fig. 8. It can be veri®ed that the jump value is given by Dv � ÿveDe: The e�ects of the
softening parameter b on the strain, displacement and velocity ®elds are displayed in Figs. 9±11. Figs.
12 and 13 demonstrate the e�ects of vb on the strain, displacement and velocity ®elds. As can be seen,

Fig. 12. (a) The strain distribution at t � 250 ms with di�erent speeds of the moving boundary for eF � 6eL: (b) The stress distri-

bution at t � 250 ms corresponding to Fig. 12(a).
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the analytical solutions represent the essential features of softening with localization, and are
continuously dependent on the given data.

3. Conclusions

To predict the evolution of localization due to dynamic softening, something must be added to the
local constitutive models to regularize the solution. Instead of invoking higher order term in space and/
or time, a rigorous partitioned-modeling approach is employed to obtain a closed-form solution for a
dynamic softening bar with local elastoplastic models, via a similarity method. The similarity method is
a useful tool to study the problem involving moving material boundary. It may reduce the second order
PDE to a second order ODE and change the moving boundary conditions to ®xed boundary conditions.
The important ®eld variables along the bar are shown, and the e�ects of model parameters on the
solutions are investigated to demonstrate the proposed analytical approach. The analytical solutions for
the bar problem under the given set of boundary and initial data, and material properties are unique
and stable based on the theory of di�erential equations, and also verify the jump conditions in the ®eld
variables. The analytical approach provides a useful estimate for the di�usion speed of the moving
material boundary between softening and non-softening domains.

Fig. 13. The displacement distribution at t � 250 ms coresponding to Fig. 12(a). (b) The velocity distribution at t � 250 ms corre-

sponding to Fig. 12(a).
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To obtain a closed-form solution, the key assumption made in this paper is that the material surface
is moving at a constant speed. Based on the experimental data available, however, the evolution of
localization appears to be an energy dissipation and di�usion process which should be dependent on the
stress state and internal state variables. A computational procedure must be developed to simulate the
nonlinear di�usion process associated with the evolution of material failure. The closed-form solution
obtained here could be used to verify the computational procedure.
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